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SEMIFREDHOLM LINEAR RELATIONS IN OPERATOR RANGLES∗

The stability of semiFredholm operators under strictly singular or small perturbation in Banach
spaces were studied by several authors [9, 14, 16, 18],. . . . The main purpose of this paper is to study
this problem for semiFredholm linear relations in operator ranges. We also give properties of adjoints
of semiFredholm linear relations. Examples are exhibited proving that these results are not valid in
arbitrary normed spaces.
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§ 1. Introduction

Properties of conjugates and the stability of semiFredholm operators in Banach spaces
under strictly singular or small perturbations were studied by several authors [9, 14, 16,
18, . . . ]. The aim of this paper is to study these questions in the more general setting of
linear relations between operator ranges.

In Section 2, we introduce the class of semiFredholm linear relations in normed spaces
and we prove several results which will be used to prove the main results.

In Section 3 we investigate the relationship between a semiFredholm linear relation and
its conjugate.

In Section 4 we study the perturbation of semiFredholm linear relations following the
pattern followed for study the analogue question of semiFredholm operators.

Notations. We adhered to the notation and terminology of the book [8] : X, Y are
normed spaces, X ′ —the dual space of X.

If M ⊂ X and N ⊂ X ′ are subspaces, then M⊥ := {x′ ∈ X ′ : x′(x) = 0 for all x ∈ M},
N� := {x ∈ X : x′(x) = 0 for all x′ ∈ N}. A multivalued linear operator or linear relation
T : X → Y , denoted by T ∈ LR(X, Y ) or T ∈ LR(X) when X = Y , is a set-valued map such
that its graph G(T ) := {(x, y) ∈ X × Y : y ∈ Tx} is a linear subspace of X × Y . Since T (0)
is a linear subspace and y ∈ Tx ⇔ Tx = y + T (0), it follows that for x1,x2 in the domain
of T (which is denoted by D(T )), and non-zero scalar α we have Tx1 + Tx2 = T (x1 + Tx2)
and T (αx1) = αTx1. If T maps the points of its domain to singletons, then T is said to be
a single valued linear operator or simply operator.

Let M be a subspace of D(T ). Then the restriction T |M is defined by G(T |M ) :=
:= {(m, y) : m ∈ M, y ∈ Tm}. For any subspace M of X such that D(T ) ∩ M �= ∅, we

write T |M∩D(T )= T |M . The inverse of T is the linear relation T−1 defined by G(T−1) =
= {(y, x) ∈ Y × X : (x, y) ∈ G(T )}. If T−1 is single valued, then T is called injective,

that is, T is injective if and only if its null space N(T ) := T−1(0) = {0}, T is said to be
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surjective if its range R(T ) := TD(T ) = Y . The completion of T , denoted by T̃ , is defined
by G(T̃ ) := G̃(T ) ⊂ X̃ × Ỹ , where X̃ denotes the completion of X. For T ∈ LR(X, Y )
we denote a(T ) := dimN(T ), b(T ) := dimY/R(T ), b(T ) := dimY/R(T ). The index of T is
defined as i(T ) := a(T ) − b(T ) provided a(T ) and b(T ) are not both infinite.

The adjoint or conjugate T ′ of T is defined by G(T ′) := G(−T−1)⊥ ⊂ Y ′ × X ′, where
〈(y, x), (y′, x′)〉 := 〈x, x′〉+〈y, y′〉. This means that (y′, x′) ∈ G(T ′) if and only if y′(y)−x′(x) =
= 0 for all (x, y) ∈ G(T ).

For T ∈ LR(X, Y ), QT denotes the quotient map from Y onto Y/T (0). Clearly QT T

is single valued. For x ∈ D(T ), ‖ Tx ‖:=‖ QT Tx ‖ and the norm of T is defined by
‖ T ‖:=‖ QT T ‖.

A linear relation T ∈ LR(X, Y ) is called closed if its graph is a closed subspace, continuous
if for each neighbourhood V in R(T ), T−1(V ) is a neighbourhood in D(T ) equivalently
‖ T ‖< ∞, open if T−1 is continuous equivalently γ(T ) > 0 where γ(T ) is the minimum
modulus of T defined by γ(T ) := sup{λ ≥ 0 : λd(x,N(T )) ≤‖ Tx ‖ for x ∈ D(T )}, compact
if QT TBD(T ) is compact, precompact if QT TBD(T ) is totally bounded (here BD(T ) denotes
the closed unit ball of D(T )), strictly singular if there is no infinite dimensional subspace
M of D(T ) for which T |M is injective and open. Continuous everywhere defined operators
referred to as bounded operators.

We call a subset R of a Banach space Y an operator range if there exists a Banach space
X and a bounded operator T : X → Y such that R(T ) = R. We note that a subspace R of
a Banach space is an operator range if and only if there exists a stronger norm on R under
which R is complete [6]. If ‖ . ‖ is the norm on R we will denote the stronger norm on R

under which R is Banach by ‖ . ‖1. We will denote (R, ‖ . ‖1) by R1. The bounded bijection
from R1 onto R will be denoted by αR and we will use βR to denote the closed and open
bijection α−1

R .

Linear relations were introduced in Functional Analysis by J. von Neumann [19], mo-
tivated by the need to consider of non-densely defined linear differential operators which
are considered by Coddington [4], Coddington and Dijksma [5], among others. Problems in
optimisation and control also led to the study of set-valued maps and differential inclusions
(see, for example, Aubin and Cellina [2], Clarke [3], among others). Studies of convex pro-
cesses, tangent cones. . . form part of the theory of convex analysis developed to deal with
non-smooth problems in viability and control theory, for example. Others recent works on
multivalued mappings include the treatise on partial differential relations by Gromov [15], the
application of multivalued methods to solving differential equations by Favini and Yagi [11]
and the book “Multivalued Linear Operators” by Cross [8].

Operator ranges are natural objects of investigation because the domain of a closed
operator between Banach spaces is an operator range and every operator range is the domain
of some closed operator. Many normed spaces that appear in applications are operator ranges,
like the spaces C[0,1] with the norm of L2[0,1], or some Sobolev spaces with suitable L2-norms.
One more reason for their investigation is that the Burnside theorem on invariant subspaces
of algebras of operators in finite dimensional spaces admits an adequate generalisation to
strongly closed algebras of operators on Hilbert spaces in terms of invariant operator ran-
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ges [13]. Operator ranges in Banach spaces were studied in the papers [1, 6, 7, 10, 12, 13, 17,
21, 22], among others. Nevertheless many natural questions remain unanswered.

§ 2. Definitions and basic results

The notion of semiFredholm operator in Banach spaces can be generalised naturally to
linear relations in normed spaces as follows:

Definition 1. Let T ∈ LR(X,Y ) be closed. We say that T is upper semiFredholm if T

has closed range and finite dimensional null space, lower semiFredholm if its range is closed
and finite codimensional, semiFredholm if T is upper or lower semiFredholm and T is called
Fredholm if it is upper and lower semiFredholm.

The corresponding classes of linear relations will be denoted by USF(X, Y ), LSF(X,Y ),
SF(X, Y ) and F(X, Y ) respectively.

In this Section we prove some auxiliary results that we shall need to obtain the main
theorems.

Lemma 2. Let T ∈ LR(X,Y ) be closed. Then
(i) QT T is a closed operator and T (0) and N(T ) are closed subspaces.
(ii) R(T ) is closed if and only if so is R(QT T ).
(iii) N(T ) = N(QT T ) and b(T ) = b(QT T ).
(iv) R(T ′) = R((QT T )′), a(T ′) = b(T ) and a(T ) ≤ b(T ′) with equality if T is open.

Proof. (i) If T is closed, then by [8, II.5.1 and II.5.3], QT T is closed, T (0) is closed and T−1

is closed and hence N(T ) := T−1(0) is closed.
(ii) Note that R(QT T ) = R(T )/T (0) is closed if and only if R(T ) is closed (as T (0) is

closed by (i)).
(iii) That N(T ) = N(QT T ) follows from [8, II.3.4] and (i), while the equality b(T ) =

= b(QT T ) is a simple consequence of the property T (0) closed and [8, I. 6.10].
(iv) The equality R(T ′) = = R((QT T )′) holds trivially by [8, III. 1.10]. Finally, as

N(T ′) = R(T )⊥ and N(T ) = R(T ′)� by [8, III. 1.4], we obtain that a(T ′) = dimN(T ′) =
= dimR(T )⊥ = dim(Y/R(T ))′ = dimY/R(T ) = b(T ) and a(T ) = dimN(T ) = dimN(T )′ =
= dimX ′/N(T )⊥ ≤ dimX ′/R(T ) = b(T ′). (Note that here N(T ) is closed since T is closed).
But if T is open, then N(T )⊥ = R(T ′) by [8, III. 4.6] and thus a(T ) = b(T ′). �

Proposition 3. Let T ∈ LR(X, Y ) be closed. Then we have
(i) If X is an operator range, then TαX is closed, R(T ) = R(TαX) and a(T ) = a(TαX).
(ii) If Y is an operator range, then βY T is closed, N(T ) = N(βY T ) and b(T ) = b(βY T ).

Proof. (i) Clearly R(TαX) = TαXD(TαX) = TαXα−1
X D(T ) = TD(T ) = R(T ).

Assume in the first instance that T is single valued. Then, TαX is obviously closed since
T is closed and αX is a bounded operator. Clearly, a(T ) = a(TαX). For the general case,
substituting T for QT T , the result follows from Lemma 2 combined with the case when T is
assumed to be single valued.

(ii) We consider the canonical factorisation of T , T = T̂QN(T ), where the injective
component T̂ of T is the linear relation T̂ ∈ LR(X/N(T ), Y ) given by G(T̂ ) := {([x], y) :
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(x, y) ∈ G(T )} and QN(T ) is the quotient map from X onto X/N(T ). In [8, V. 13.2] it
is shown that T̂ is closed if and only if so is T . (Note that here N(T ) is closed by virtue
of Lemma 2). Then T̂ and thus T̂−1is closed and the statement (i) assures that T̂−1αY =

= T̂−1β−1
Y = (̂βY T )

−1
is closed. Hence βY T̂ = β̂Y T and thus βY T is closed.

Clearly N(βY T ) := (βY T )−1(0) = T−1β−1
Y (0) = T−1(0) := N(T ). The equality b(T ) =

= b(βY T ) is just a special case of the following property due to Cross [8, I. 6.11] : Let
U ∈ LR(X,Y ), V ∈ LR(Y, Z) such that D(V ) = Y . Then a(V U)+b(U)+b(V )+dim{U(0)∩
∩N(V )} = b(V U) + a(U) + a(V ). �

An obvious consequence of Proposition 3 is the following

Corollary 4. Let T ∈ LR(X,Y ). Then
(i) If X is an operator range, then T ∈ USF(X, Y ) (respectively, T ∈ LSF(X,Y )) implies

that TαX ∈ USF(X1, Y ) (respectively, TαX ∈ LSF(X1, Y )) and T ∈ F(X, Y ) implies that
TαX ∈ F(X1, Y ) with i(T ) = i(TαX) in both cases.

(ii) If Y is an operator range, then T ∈ USF(X,Y ) (respectively, T ∈ LSF(X,Y )) implies
that βY T ∈ USF(X,Y1) (respectively, βY T ∈ LSF(X, Y1)) and T ∈ F(X, Y ) implies that
βY T ∈ F(X, Y1) with i(T ) = i(βY T ) in both cases.

We have the following generalisation of the Closed Graph theorem for linear relations [8,
III. 5.4].

Proposition 5. Let T ∈ LR(X, Y ) be closed with D(T ) closed in the Banach space X and
Y is an operator range. Then T is continuous.

Proof. By Proposition 3, βY T ∈ LR(X,Y1) is closed with D(βY T ) = D(T ) and Y1 is
obviously complete. Then, by [8, III. 5.4], βY T is continuous. Since βY T (0) ⊂ D(αY ) = Y1,
T = αY (βY T ) is continuous by [8, II. 3.13]. �

§ 3. Adjoint of semiFredholm linear relations

We now analyse the connection between a semiFredholm linear relation and its conjugate.
We have the following classic result:

Proposition 6. Let T ∈ LR(X, Y ) be a closed single valued where X and Y are Banach
spaces. Then

(i) T ∈ USF(X, Y ) if and only if T ′ ∈ LSF(Y ′, X ′).
(ii) T ∈ LSF(X, Y ) if and only if T ′ ∈ USF(Y ′, X ′).

The corresponding properties for linear relations will now be investigated.

Theorem 7. Let T ∈ LR(X, Y ) with X an operator range and Y complete. Then
(i) T ′ ∈ LSF(Y ′, X ′) if T ∈ USF(X,Y ).
(ii) T ′ ∈ USF(Y ′, X ′) if T ∈ LSF(X, Y ).

Proof. We first prove that
“If X is an operator range, Y is complete and T ∈ LR(X, Y ) is closed with R(T ) closed,

then R(T ′) is closed”. (1)



102 T. Álvarez

Indeed, T−1 is closed with D(T−1) = R(T ) closed in Y Banach. So, from Proposition 5
it follows that T−1 is continuous, that is, T is open equivalently R(T ′) = N(T )⊥ [8,
III. 4.6]. Hence, the property (1) is established and also that dimN(T ) = dimX ′/N(T )⊥ =
= dimX ′/R(T ′). These facts combined with dimN(T ′) = dimR(T )⊥ ([8, III. 1.4]) =
= dimY/R(T ) yields the desired result. �

The following example illustrates that the completeness of Y is essential in Theorem 7.

Example 8. Let X be a Banach space. Then there exists a normed space Y and a Fredholm
everywhere defined operator T ∈ LR(X, Y ) such that T ′ is not semiFredholm.

Let S ∈ LR(X) be an injective everywhere defined precompact operator, Y := R(S) and
let T be the operator S considered as an element of LR(X, Y ). Then, it is clear that T is
closed, injective and surjective and hence T is Fredholm. However, T ′ is not semiFredholm
since T ′ is compact.

Theorem 9. Let T ∈ LR(X, Y ) be closed with X a Banch space. Then
(i) T ∈ USF(X, Y ) if T ′ ∈ LSF(Y ′, X ′).
(ii) T ∈ LSF(X, Y ) if T ′ ∈ USF(Y ′, X ′).

Proof. We first verify that
“If X is a Banach space and T ∈ LR(X, Y ) is closed such that R(T ′) is closed, then R(T )

is closed”
To prove this property it is enough to note that R(T ′) is closed if and only if T ′ is open

([8, III. 4.2, III. 4.4 and III. 5.2]) and that if X is complete and T ∈ LR(X, Y ) is closed, then
γ(T ) = γ(T ′) and R(T ) is closed if γ(T ) > 0 ([8, III. 5.3]). Now, proceeding as in Theorem 7
we obtain that a(T ) = b(T ′) and a(T ′) = b(T ). �

Example 10 below shows that Theorem 9 fails if X is not complete.

Example 10. There exists a normed space X and a closed operator T ∈ LR(X) such that
T is not semiFredholm and T ′ is Fredholm.

Let X = coo be the space of all scalar sequences which at most finitely many non-
zero coordinates normed by the norm ‖ (αn) ‖:= sup{| αn |: n ∈ N} and we define S by
S : x := (α1, α2, . . . , αn, . . .) ∈ X → Sx := (0, α1, α2/2, . . . , αn/n, . . .) ∈ X

Labuschagne [18, 20] proves that S is a precompact operator not compact such that
R(I − S) is a proper dense subspace of X. Hence, T := I − S is not semiFredholm and T ′ is
Fredholm (as S′ is compact).

§ 4. Perturbation theorems for semiFredholm linear relations

In this Section we analyse the stability of semiFredholm linear relations under strictly
singular or small perturbations.

Theorem 11. Let T ∈ LR(X,Y ) with X an operator range and Y complete. Let K ∈
∈ LR(X, Y ) be continuous and strictly singular such that K(0) ⊂ T (0) and D(T ) ⊂ D(K).
Then

(i) If T ∈ USF(X,Y ) then T + K ∈ USF(X,Y ) and i(T ) = i(T + K).
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(ii) If T ∈ LSF(X, Y ) and (KαX)′ is strictly singular, then T + K ∈ LSF(X, Y ) and
i(T ) = i(T + K).

Proof. We shall first show the following property:
“Let T ∈ LR(X, Y ) be closed and let Y be complete. If S ∈ LR(X, Y ) is continuous with

S(0) ⊂ T (0) and D(T ) ⊂ D(S), then T + S is closed”. (2)
Suppose first that T and S are single valued and let (xn) be a sequence inD(T+S) = D(T )

such that xn → x and (T + S)xn → y for some x ∈ X and y ∈ Y . Then ‖T (xn − xm)‖ ≤
≤ ‖(T + S)(xn − xm)‖+ ‖S‖‖xn − xm‖. Thus (Txn) is a Cauchy sequence in Y and, since Y

is complete Txn → z for some z ∈ Y . Since T is closed and S is continuous we obtain that
x ∈ D(T ) and (T + S)x = y, that is, T + S is closed.

Turning to the general case, it follows from by hypothesis and Lemma 2 that (T +S)(0) =
= T (0) (so QT+S = QT ), QT T is a closed single valued and QT S is a continuous single valued.
Applying the first part of the proof, we have that QT+S(T + S) = QT T + QT S is closed and
again by Lemma 2 it follows that T + S is closed, as desired.

(i) Let T ∈ USF(X, Y ). Assume in the first instance that T and K are single valued. The
assertion follows immediately combining Proposition 3 with the strictly singular perturbation
theorem for upper semiFredholm operators in Banach spaces (see, for example [14, V. 2.1]),
applied to TαX and KαX .

For the general case, we observe that (T + K)(0) = T (0), QT T is a closed operator
and QT K is a continuous strictly singular operator. Thus, what has already been proved,
QT+K(T + K) = QT T + QT K verifies the desired property and by virtue of Lemma 2 the
same is true to T + K.

(ii) Suppose (ii) holds. By the Open Mapping theorem we have that TαX is open if and
only if R(TαX) is closed if and only if R((TαX)′) is closed. From this fact combined with
Lemma 2 and Proposition 3 we see that R(T ) = R(TαX), a(T ) = a(TαX) = b((TαX)′) and
b(T ) = b(TαX) = a((TαX)′). Therefore (TαX)′ ∈ USF(Y ′, X ′).

Since KαX is continuous and strictly singular, we obtain that D((TαX)′) ⊂ D((KαX)′)
and (KαX)′(0) = D(KαX)⊥ ([8, III. 1.4])⊂ (D(TαX))

⊥
= (TαX)′(0). Thus, applying (i)

to (TαX)′ and (KαX)′ we deduce that (TαX)′ + (KαX)′ ∈ USF(Y ′, X ′
1) with i((TαX)′) =

= i((TαX)′ + (KαX)′). But, since D(TαX) ⊂ D(KαX) and KαX is continuous, (TαX)′ +
+ (KαX)′ = ((T + K)αX)′ by [8, III. 1.5].
Therefore ((T + K)αX)′ is upper semiFredholm equivalently (T + K)αX is lower

semiFredholm by Proposition 6 with i(TαX) = i((T + K)αX). The result now follows
immediately by considering Proposition 3. �

The above Example 10 shows that the class of semiFredholm linear relations in arbitrary
normed spaces is not stable under strictly singular perturbations.

Finally we study the behaviour of semiFredholm linear relations under small perturbation.
Recall that a linear relation T ∈ LR(X,Y ) is called a F+-relation if there exists a finite
codimensional subspace M of X for which T |M is injective and open and T is said to be a
F−-relation if its adjoint is a F+-relation, [8, V. 1.1].

Proposition 12. Let T ∈ F+(X, Y ) ∪ F−(X,Y ) and suppose that K ∈ LR(X, Y ) satisfies
D(T ) ⊂ D(K), K(0) ⊂ T (0) and ‖ K ‖< γ(T̃ ). Then T + K ∈ F+(X,Y ) ∪ F−(X,Y ) and
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i(T̃ ) = i(T̃ + K̃).

Proof. This result was proved by Wilcox [23, 6. 1.1]. The proof is along the lines of the
proof of the analogous result provided in [8, V. 15.6] for the case when K is single valued.

�

Theorem 13. Let X be an operator range, Y complete, T ∈ LR(X, Y ), K ∈ LR(X, Y )
such that K(0) ⊂ T (0), D(T ) ⊂ D(K) and ‖ K ‖< 1/ ‖ αX ‖ γ(TαX). Then

(i) If T ∈ USF(X,Y ), then T + K ∈ USF(X, Y ) and i(T ) = i(T + K).

(ii) If T ∈ LSF(X,Y ), then T + K ∈ LSF(X, Y ) and i(T ) = i(T + K).

Proof. By virtue of [8, V. 1.7] and Theorem 7 we deduce that for closed linear relations in
Banach spaces we have the equivalences:

T ∈ F+ ⇔ T ∈ USF and T ∈ F− ⇔ T ∈ LSF (3)

(i) Suppose that T is upper semiFredholm. Then, from (3) and Proposition 3, TαX is a
F+-relation and thus applying Proposition 12 to TαX and KαX we obtain that (T + K)αX

is upper semiFredholm and i(TαX) = i((T + K)αX). The assertion now follows immediately
from Proposition 3.

(ii) If T is lower semiFredholm, then proceeding as in the proof of Theorem 11 and
observing that ‖ KαX ‖=‖ (KαX)′ ‖< γ(TαX) = γ((TαX)′) we conclude that T + K is
lower semiFredholm and i(T ) = i(T + K). �

The following example shows that the class of semiFredholm linear relations in arbitrary
normed spaces is not stable under small perturbations even for bounded operators.

Example 14. There exists a normed space X and a continuous everywhere defined operator
T ∈ LR(X) such that ‖ T ‖< 1 and for any 0 <| λ |< 1, R(I + λT ) is not closed.

Let X = coo and let T be the right-shift operator. For any scalar λ such that 0 <| λ |< 1,
we have that ‖ λT ‖< 1 = γ(I) and Labuschagne [18, 6.1] proves that R(I + λT ) is a dense
subspace of coo.
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