К.В. Голосов, Н.И. Макаренко

ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ ТЕОРИИ ВНУТРЕННИХ ВОЛН*

Рассматривается эллиптическая краевая задача в двойной полосе, возникающая при описании стационарных волн на границе раздела однородной и экспоненциально стратифицированной жидкостей. С помощью Фурье-представления получена оценка решения в классе функций с экспоненциальной асимптотикой затухания на бесконечности.

Kлючевые слова: двухслойная жидкость, экспоненциальная стратификация, внутренние волны, эллиптическая краевая задача, оценки решения, преобразование Фурье, функция Грина.

1. Постановка задачи

Для вещественного r>0 обозначим $\Pi_1=\mathbb{R}\times (-r,0)$ и $\Pi_2=\mathbb{R}\times (0,1)$. Рассматривается следующая линейная краевая задача для функции $u(x,\psi)$ в двойной полосе $(x,\psi)\in\Pi=\Pi_1\cup\Pi_2$:

$$u_{xx} + u_{\psi\psi} = f_1 \qquad (-r < \psi < 0),$$

 $u(x, -r) = 0,$ (1)

$$u_{xx} + u_{\psi\psi} - \sigma u_{\psi} + \lambda^2 u = f_2$$
 $(0 < \psi < 1),$ $u(x, 1) = 0,$ (2)

$$u(x,0+) = u(x,0-),$$
 $u(x,0+) + F_2^2 u_{\psi}(x,0+) - rF_1^2 u_{\psi}(x,0-) = \varphi(x).$ (3)

Здесь функции $f_1(x,\psi)$, $f_2(x,\psi)$, $\varphi(x)$ и параметры r, σ , λ , F_1 , F_2 предполагаются заданными. Указанная постановка возникает в результате линеаризации задачи о стационарных внутренних волнах в двухслойной жидкости с плотностью, постоянной в нижнем слое и экспоненциально зависящей от глубины в верхнем слое. Первое из граничных условий (3) — кинематическое условие, второе — динамическое условие на границе раздела слоев. В качестве независимых переменных здесь используются переменные Мизеса (x,ψ) , так что прямым $\psi=$ const соответствуют линии тока $y=Y(x,\psi)$ в плоскости течения (x,y). В частности, значение $\psi=0$ определяет положение линии тока, разделяющей слои однородной и экспоненциально стратифицированной жидкостей. Формулировка задачи в переменных Мизеса позволяет «распрямить» границу раздела слоев, неизвестную в исходной нелинейной постановке. Безразмерные параметры, присутствующие в рассматриваемых уравнениях, имеют следующий смысл. Величина r — отношение размерных глубин слоев жидкости в положении равновесия; числа Фруда F_1 и F_2 характеризуют скорости течения жидкости в слоях, а параметр $\sigma>0$ задает стратификацию в верхнем слое: предполагается, что в отсутствие волнового движения плотность

^{*}Работа выполнена при финансовой поддержке РФФИ (грант 10-01–00447), программы Президиума РАН «Фундаментальные проблемы океанологии» (проект № 20.4) и проекта «Развитие научного потенциала высшей школы» 2009–2010 (№ 2.1.1/4918)

жидкости в нем имеет вид $\rho(y) = \rho_2 e^{-\sigma y}$. Параметр λ дается формулой $\lambda^2 = \sigma/(\mu F_2^2)$, где $\mu = (\rho_1 - \rho_2)/\rho_2$ — относительный скачок плотности на границе раздела.

Задача (1)–(3) с $\sigma = \lambda = 0$ рассматривалась в [1] при анализе разрешимости нелинейной задачи о внутренних волнах в виде плавного бора в двухслойной жидкости с постоянными плотностями ρ_1 и ρ_2 в слоях. В упомянутой работе установлено существование решения в специальных классах аналитических функций с экспоненциальной асимптотикой убывания при $|x| \to \infty$. Указанное поведение при больших |x| характерно для решений типа уединенных волн. Вопрос об асимптотике таких решений при $\sigma \to 0$ (предельный переход от кусочно-экспоненциальной стратификации к кусочно-постоянной) является нетривиальным и представляет существенный интерес для динамики атмосферы и океана. В статье [2] в этом контексте исследованы при $\sigma \neq 0$ спектральные свойства линеаризованной однородной задачи (1)–(3) с $f_1 = f_2 = \varphi = 0$. Основной целью настоящей работы является получение представления решения неоднородной задачи (1)–(3) для заданных правых частей f_1 , f_2 , φ и оценка нормы соответствующего оператора в пространствах функций с экспоненциальным затуханием по x.

2. Фурье-представление решения

Применяя к уравнениям (1)–(3) частичное преобразование Фурье по переменной x

$$\mathbf{F}[u](\xi, \psi) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\xi x} u(x, \psi) \, dx,$$

получаем следующую задачу для Фурье-образа $\widehat{u} = \mathbf{F}[u]$ искомой функции u:

$$\widehat{u}_{\psi\psi} - \xi^2 \widehat{u} = \widehat{f}_1(\xi, \psi) \qquad (-r < \psi < 0),$$

$$\widehat{u}(\xi, -r) = 0,$$
(4)

$$\widehat{u}_{\psi\psi} - \sigma \widehat{u}_{\psi} + (\lambda^2 - \xi^2) \,\widehat{u} = \widehat{f}_2(\xi, \psi) \qquad (0 < \psi < 1),$$

$$\widehat{u}_2(\xi, 1) = 0,$$
(5)

$$\widehat{u}(\xi, 0+) = \widehat{u}(\xi, 0-), \qquad \widehat{u}(\xi, 0+) + F_2^2 \widehat{u}_{\psi}(\xi, 0+) - rF_1^2 \widehat{u}_{\psi}(\xi, 0-) = \widehat{\varphi}(\xi). \tag{6}$$

Введем функцию $\widehat{f}(\xi, \psi)$, определенную в двойной полосе $(\xi, \psi) \in \mathbb{R} \times \{(-r, 0) \bigcup (0, 1)\}$, полагая $\widehat{f}(\xi, \psi) = \widehat{f}_1(\xi, \psi)$ при $-r < \psi < 0$ и $\widehat{f}(\xi, \psi) = \widehat{f}_2(\xi, \psi)$ при $0 < \psi < 1$. Пользуясь линейностью задачи (4)–(6), будем искать ее решение в виде

$$\widehat{u} = G\langle \widehat{f} \rangle + K\langle \widehat{\varphi}, \widehat{f} \rangle, \tag{7}$$

где слагаемое $\widehat{u}^{(1)} = G\langle \widehat{f} \rangle$ является решением уравнений (4)–(5) с заданными правыми частями \widehat{f}_1 , \widehat{f}_2 и однородным краевым условием $\widehat{u}^{(1)}(\xi,0+)=\widehat{u}^{(1)}(\xi,0-)=0$ вместо условий (6) на границе раздела слоев $\psi=0$. Оператор K дает решение $\widehat{u}^{(2)}=K\langle \widehat{\varphi},\widehat{f} \rangle$ однородных уравнений (4) и (5) с $\widehat{f}_1=\widehat{f}_2=0$, обеспечивая при этом выполнение граничных условий (6) для полного решения $\widehat{u}=\widehat{u}^{(1)}+\widehat{u}^{(2)}$. В таком случае решение $u(x,\psi)$ исходной задачи (1)–(3) выражается формулой

$$u = \mathbf{F}^{-1}[G\langle \widehat{f} \rangle + K\langle \widehat{\varphi}, \widehat{f} \rangle], \tag{8}$$

где символом ${\bf F}^{-1}$ обозначен оператор обратного преобразования Фурье по x.

Фурье-образ $\widehat{u}^{(1)}(\xi,\psi)$ имеет вид

$$\widehat{u}^{(1)}(\xi, \psi) = \int_{-r}^{1} \mathcal{G}(\psi, \chi; \, \xi) \, \widehat{f}(\xi, \chi) \, d\chi, \tag{9}$$

где функция Грина $\mathcal{G}(\cdot,\cdot;\xi)$ задается в промежутке $-r\leqslant\psi\leqslant0$, соответствующем нижнему слою, следующими выражениями:

$$\mathcal{G}(\psi,\chi;\,\xi) = \frac{1}{\xi \, sh \, r\xi} \left\{ \begin{array}{ll} \mathrm{sh} \, \xi \psi \, \, \mathrm{sh} \, \xi (\chi+r), & -r \leqslant \chi \leqslant \psi, \\ \mathrm{sh} \, \xi \chi \, \, \mathrm{sh} \, \xi (\psi+r), & \psi \leqslant \chi \leqslant 0, \\ 0 & 0 \leqslant \chi \leqslant 1. \end{array} \right.$$

Представление функции $\mathcal{G}(\cdot,\cdot;\xi)$ в верхнем слое $0\leqslant\psi\leqslant 1$ использует вспомогательный параметр ν ,

$$\nu^2 \stackrel{def}{=} \lambda^2 - \frac{1}{4} \,\sigma^2 = \frac{\sigma}{\mu F_2^2} - \frac{1}{4} \,\sigma^2, \tag{10}$$

с которым при $\xi^2 > v^2$ имеем

$$\begin{split} \mathcal{G}(\psi,\chi;\,\xi) &= \frac{e^{\frac{\sigma}{2}\,(\psi-\chi)}}{\sqrt{\xi^2-\nu^2}\,\sinh\sqrt{\xi^2-\nu^2}} \times \\ &\quad \times \left\{ \begin{array}{l} \mathrm{sh}\left\{\sqrt{\xi^2-\nu^2}\,(\psi-1)\right\}\, \mathrm{sh}\left\{\sqrt{\xi^2-\nu^2}\,\chi\right\}, & 0\leqslant\chi\leqslant\psi, \\ \mathrm{sh}\left\{\sqrt{\xi^2-\nu^2}\,\psi\right\}\, \mathrm{sh}\left\{\sqrt{\xi^2-\nu^2}\,(\chi-1)\right\}, & \psi\leqslant\chi\leqslant1, \\ 0 & -r\leqslant\chi\leqslant0, \end{array} \right. \end{split}$$

а при
$$\xi^2 < \mathbf{v}^2$$
 справедливо выражение
$$\mathcal{G}(\psi, \chi; \, \xi) = \frac{e^{\frac{\sigma}{2}(\psi - \chi)}}{\sqrt{\mathbf{v}^2 - \xi^2} \, \sin \sqrt{\mathbf{v}^2 - \xi^2}} \times \\ \begin{cases} \sin \left\{ \sqrt{\mathbf{v}^2 - \xi^2} \, (\psi - 1) \right\} \, \sin \left\{ \sqrt{\mathbf{v}^2 - \xi^2} \, \chi \right\}, & 0 \leqslant \chi \leqslant \psi, \\ \sin \left\{ \sqrt{\mathbf{v}^2 - \xi^2} \, \psi \right\} \, \sin \left\{ \sqrt{\mathbf{v}^2 - \xi^2} \, (\chi - 1) \right\}, & \psi \leqslant \chi \leqslant 1, \\ 0 & -r \leqslant \chi \leqslant 0. \end{cases}$$

Функция $\widehat{u}^{(2)} = K\langle \widehat{\varphi}, \widehat{f} \rangle$ дается формулой

$$\widehat{u}^{(2)}(\xi, \psi) = s(\psi) \frac{\mathcal{K}(\psi; \xi)}{\Delta(\xi)} \Big(\widehat{\varphi}(\xi) + \int_{-r}^{1} F^{2}(\chi) \mathcal{K}(\chi; \xi) \, \widehat{f}(\xi, \chi) \, d\chi \Big), \tag{11}$$

где ядро \mathcal{K} имеет вид

$$\mathcal{K}(\psi;\xi) = \left\{ \begin{array}{l} \frac{\sinh\xi(\psi+r)}{\sin r\xi}, & (-r\leqslant\psi<0), \\ \\ \frac{\sin\left\{\sqrt{\xi^2-\nu^2}\left(1-\psi\right)\right\}}{\sin\sqrt{\xi^2-\nu^2}}, & (0<\psi\leqslant1,\,\xi^2>\nu^2), \\ \\ \frac{\sin\left\{\sqrt{\nu^2-\xi^2}\left(1-\psi\right)\right\}}{\sin\sqrt{\nu^2-\xi^2}}, & (0<\psi\leqslant1,\,\xi^2<\nu^2). \end{array} \right.$$

Кусочно-экспоненциальные функции $s(\psi)$ и $F^2(\chi)$ в (11) имеют вид

$$s(\psi) = \left\{ \begin{array}{ll} 1 & (-r \leqslant \psi < 0), \\ e^{\frac{\sigma}{2}\psi} & (0 < \psi \leqslant 1), \end{array} \right. \qquad F^2(\chi) = \left\{ \begin{array}{ll} F_1^2 & (-r \leqslant \chi < 0), \\ F_2^2 \, e^{-\frac{\sigma}{2}\chi} & (0 < \chi \leqslant 1), \end{array} \right.$$

а $\Delta(\xi)$ — дисперсионная функция, которая при $\xi^2 < \nu^2$ определяется формулой

$$\Delta(\xi) = F_1^2 r \xi \, \coth r \xi + F_2^2 \left(\sqrt{\nu^2 - \xi^2} \, \cot \sqrt{\nu^2 - \xi^2} - \frac{\sigma}{2} \right) - 1, \tag{12}$$

а при $\xi^2 > v^2$ — формулой

$$\Delta(\xi) = F_1^2 r \xi \operatorname{cth} r \xi + F_2^2 \left(\sqrt{\xi^2 - \nu^2} \operatorname{cth} \sqrt{\xi^2 - \nu^2} - \frac{\sigma}{2} \right) - 1.$$
 (13)

При $\xi^2 = \mathbf{v}^2$ функции $\mathcal{G}, \, \mathcal{K}$ и Δ доопределяются по непрерывности.

Равенства (7)-(11) дают формальное решение, свойства которого нуждаются в дополнительной характеристике. Принципиально важной является возможность аналитического продолжения Фурье-образа решения $\widehat{u}(\xi,\psi)$ по переменной ξ в плоскость комплексной переменной $\zeta = \xi + i\eta$. Ширину полосы аналитичности $|\operatorname{Im} \zeta| < \alpha$ функции $\hat{u} = \hat{u}^{(1)} + \hat{u}^{(2)}$, заданной формулами (9) и (11), ограничивают нули функций $\sin r\zeta$, $\sinh\sqrt{\zeta^2-\gamma^2}$ и $\Delta(\zeta)$, являющиеся полюсами для \hat{u} . Точки ветвления квадратного корня не приводят к многозначности функции \hat{u} , поскольку в ее представлении участвуют четные аналитические функции переменной $\omega = \sqrt{\zeta^2 - v^2}$. Функция sh $r\zeta$ обращается в нуль в точках мнимой оси $\zeta = kr^{-1}\pi i$, где $k \in \mathbb{Z}$. Следует отметить, что из физических соображений нас интересует решение задачи при $0 < v^2 < \pi^2$. В дальнейшем это условие будет предполагаться выполненным, и в этой ситуации нули функции $\sinh\sqrt{\zeta^2-\nu^2}$ также лежат на мнимой оси и образуют множество $\{\pm \sqrt{|k^2\pi^2-\nu^2|}\,i:k\in\mathbb{Z}\}$. Расположение нулей дисперсионной функции $\Delta(\zeta)$ в комплексной плоскости ζ существенно зависит от чисел Фруда F_1, F_2 . В [2] показано, что Δ имеет счетное множество корней, которые могут быть либо вещественными (их всегда конечное число), либо чисто мнимыми, причем последовательность этих корней не имеет предельных точек, отличных от $\zeta = \infty$. Вещественным нулям отвечают осциллирующие волны с периодом по x, который однозначно задается параметрами F_1, F_2 . Мы будем рассматривать те значения F_1, F_2 , при которых функция $\Delta(\zeta)$ не имеет действительных корней. Именно для таких чисел Фруда исходная нелинейная задача имеет асимптотические решения типа уединенных волн с экспоненциальным убыванием при $|x| \to \infty$. Граница указанного множества в плоскости пар чисел Фруда (F_1, F_2) дается компонентой кривой

$$F_1^2 + F_2^2 \left(\sqrt{\frac{\sigma}{\mu F_2^2} - \frac{\sigma^2}{4}} \operatorname{ctg} \sqrt{\frac{\sigma}{\mu F_2^2} - \frac{\sigma^2}{4}} - \frac{\sigma}{2} \right) = 1,$$

отвечающей главной ветви котангенса в этой формуле. Пусть ζ_0 — ближайший к вещественной оси мнимый корень функции $\Delta(\zeta)$. Тогда величина

$$\alpha_* = \min\{r^{-1}\pi, \sqrt{\pi^2 - \nu^2}, |\operatorname{Im}\zeta_0|\}$$
 (14)

является естественной границей для показателя затухания $\alpha < \alpha_*$ искомого решения $u(x, \psi)$ при $|x| \to \infty$.

3. Функциональные пространства

Определим пространства, в которых ищется решение краевой задачи (1)–(3). Выбор функциональных классов при исследовании бифуркаций решений типа уединенных волн для уравнений гидродинамики, как правило, предопределяется свойствами соответствующих асимптотических решений [1; 3; 4]. Ниже описывается специальная шкала банаховых пространств, учитывающая специфику задачи о волнах в двухслойной жидкости. Пусть заданы параметры $\rho > 0$, $\alpha > 0$ и вещественный промежуток [a,b]. Символом $\Pi_{[a,b]}$ обозначим полосу $\mathbb{R} \times [a,b]$ в плоскости переменных x, ψ . Класс $E^{\alpha}_{\rho}(\Pi_{[a,b]})$ состоит из определенных в $\Pi_{[a,b]}$ функций $u(x,\psi)$, имеющих аналитическое по $\zeta = \xi + i\eta$ в комплексной области $|\operatorname{Im} \zeta| < \alpha$ преобразование Фурье $\widehat{u}(\zeta,\psi)$, непрерывное по совокупности переменных в замкнутом множестве $\{(\zeta,\psi): |\eta| \leqslant \alpha_1, \ a \leqslant \psi \leqslant b\}$ с любым $\alpha_1 < \alpha$. Норма u определяется так:

$$||u||_{\rho,\alpha} = \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \sup_{\psi \in [a,b]} |\widehat{u}(\xi + i\eta, \psi)| d\xi.$$
 (15)

Конечность этой нормы гарантирует аналитичность по z = x + iy функции $u(z, \psi)$ в области $|y| < \rho$ и, кроме того, обеспечивает непрерывность u при $|y| \leqslant \rho$ по совокупности переменных. Далее, согласно определению нормы (15) обе функции $\widehat{u}_{\pm}(\zeta, \psi) = \exp(\pm \rho \zeta)\widehat{u}(\zeta, \psi)$ при каждом фиксированном значении $\psi \in [a, b]$ принадлежат классу Харди H^1 для полосы $|Im \zeta| < \alpha$. Поэтому в силу свойств элементов из класса Харди [5] функция $\widehat{u}(\xi + i\eta, \psi)$ при почти всех $\xi \in \mathbb{R}$ имеет предельные при $\eta \to \pm \alpha$ граничные значения $\widehat{u}(\xi \pm i\alpha, \psi)$, суммируемые по ξ с экспоненциальным весом. В силу теоремы Лебега о мажорируемой сходимости это позволяет сдвинуть контур интегрирования в интеграле Фурье для u вплоть до верхней или нижней границы полосы $\eta = \pm \alpha$:

$$u(x+iy,\psi) = \int_{-\infty}^{+\infty} e^{-i(x+iy)(\xi \pm i\alpha)} \,\widehat{u}(\xi \pm i\alpha, \psi) \, d\xi.$$

Отсюда, в частности, следует, что функция $u \in E^{\alpha}_{\rho}(\Pi_{[a,b]})$ имеет экспоненциальный порядок затухания при $|x| \to \infty$ с оценкой

$$|u(x+iy,\psi)| \leq ||u||_{\rho,\alpha} \exp(-\alpha|x|)$$

для $x \in \mathbb{R}, |y| \leqslant \rho$.

Описанное выше пространство Фурье-образов $\widehat{u}(\zeta, \psi)$ является специальным случаем введенных Э. Хилле [6. Гл. VI, § 2] обобщенных классов Харди $H^p(\alpha; X)$. Эти классы определяются как множества голоморфных в полуплоскости $\eta > \alpha$ функций $f(\xi + i\eta)$ со значениями в банаховом пространстве X, имеющих конечную норму

$$||f||_p = \sup_{\eta > \alpha} \left(\int_{-\infty}^{+\infty} ||f(\xi + i\eta)||_X^p d\xi \right)^{1/p} \qquad (1 \leqslant p < \infty).$$

В нашем случае рассматривается вариант нормы с экспоненциальным весом, показателем p=1, банаховым пространством X=C[a,b] и полосой $|\eta|<\alpha$ вместо полуплоскости. Примером аналогичных классов являются пространства Винера—Соболева

(см. [7]) экспоненциально затухающих функций, имеющих аналитические Фурье-образы со значениями в пространствах Соболева $X=W_2^s[a,b]$. В гильбертовом случае p=2 их конструкция привлекает L_2 -свойства преобразования Фурье и базируется на теоремах Планшереля и Винера—Пэли. Родственные пространства использовались в работе [8] при исследовании разрешимости краевых задач с разрывными граничными условиями, моделирующими контакт свободных границ жидкости с твердыми стенками. Задача (1)—(3) принадлежит классу постановок для эллиптических уравнений с разрывными коэффициентами. Применительно к этой ситуации определим наряду с классами $E_{\rho}^{\alpha}(\Pi_{[a,b]})$ еще следующие пространства:

- а) подпространство $E_{\rho}^{\circ\alpha}$ ($\Pi_{[a,b]}$) функций $u\in E_{\rho}^{\alpha}(\Pi_{[a,b]})$, обращающихся в нуль на границах полосы $\Pi_{[a,b]}$ прямых $\psi=a$ и $\psi=b$;
- б) класс $E_{\rho}^{\alpha}(\mathbb{R})$ функций u(x) одной вещественной переменной с нормой (15); ясно, что для любой функции $u \in E_{\rho}^{\alpha}(\Pi_{[a,b]})$ при каждом $\psi \in [a,b]$ ее след $u(\cdot,\psi)$ принадлежит $E_{\rho}^{\alpha}(\mathbb{R})$;
- в) класс $E^{\alpha}_{\rho,n}(\Pi_{[a,b]})$ (или класс $E^{\alpha}_{\rho,n}(\mathbb{R})$) функций, принадлежащих $E^{\alpha}_{\rho}(\Pi_{[a,b]})$ (или $E^{\alpha}_{\rho}(\mathbb{R})$) вместе со своими производными до порядка n включительно,

$$||u||_{E^{\alpha}_{\rho,n}} = \sum_{0 \leqslant m+k \leqslant n} ||D^m_x D^k_{\psi} u||_{\rho,\alpha}.$$

Согласно введенным выше обозначениям в формулировке задачи (1)–(3) имеем множества $\bar{\Pi} = \Pi_{[-r,1]}, \; \bar{\Pi}_1 = \Pi_{[-r,0]} \;$ и $\bar{\Pi}_2 = \Pi_{[0,1]}, \;$ где черта означает замыкание. Учитывая это, будем рассматривать решения, принадлежащие классу

$$H^{\alpha}_{\rho}(\Pi) = \left\{ u \in \stackrel{\circ}{E^{\alpha}_{\rho}}(\bar{\Pi}) | \ u \in E^{\alpha}_{\rho,2}(\bar{\Pi}_{j}) \ (j=1,2) \right\}$$

с показателем $\alpha < \alpha_*$, где величина α_* определена в (14). Норма в $H^{\alpha}_{\rho}(\Pi)$ задается следующим образом:

$$\|u\|_{H^{\alpha}_{\rho}(\Pi)} \ = \ \|u\|_{E^{\alpha}_{\rho}(\bar{\Pi})} \ + \ \max_{j=1,2} \ \sum_{0 < m+n \leqslant 2} \|D^m_x D^n_{\psi} u\|_{E^{\alpha}_{\rho}(\bar{\Pi}_j)}.$$

Требование принадлежности производных искомого решения пространствам $E^{\alpha}_{\rho}(\bar{\Pi}_{j})$ (j=1,2) объясняется тем, что в нелинейной краевой задаче, линеаризация которой дает уравнения (1)–(3), правые части f_{1} и f_{2} зависят от всех вторых производных $D^{m}_{x}D^{n}_{\psi}u$ $(m+n\leqslant 2)$, а правая часть φ содержит следы первых производных u_{x} и u_{ψ} на границе раздела слоев $\psi=0$. Функции из класса $H^{\alpha}_{\rho}(\Pi)$ аналитичны по x и экспоненциально стремятся к нулю вместе со своими производными при $|x|\to\infty$, непрерывны по (x,ψ) во всей двойной полосе $\bar{\Pi}$, дважды непрерывно дифференцируемы в каждой из полос Π_{j} и обращаются в нуль на прямых $\psi=-r$ и $\psi=1$.

4. Свойства функций Грина

Определим срезающие функции $M_j: \mathbb{R}_+ \to \mathbb{R}_+ \ (j=0,1,2),$ полагая

$$M_i(t) = 1 \quad (0 \le t \le 1), \quad M_i(t) = t^{-j} \quad (t \ge 1).$$

Нижний индекс в обозначениях M_j будет указывать в оценках на порядок затухания Фурье-символов рассматриваемых операторов при $|\operatorname{Re}\zeta| \to \infty$. При оценке функций Грина полезны следующие элементарные неравенства для гиперболических функций комплексного и вещественного аргументов:

$$|sh\,\xi| \leqslant |sh\,\zeta| \leqslant ch\,\xi \quad (\zeta = \xi + i\eta),$$
 (16)

$$\left| \frac{sh \, \zeta}{\zeta} \right| \leqslant \frac{sh \, \xi}{\xi} \leqslant C(\beta) \left| \frac{sh \, \zeta}{\zeta} \right| \quad (|Im \, \zeta| \leqslant \beta < \pi). \tag{17}$$

Лемма 1. В полосе $|Im \zeta| \leqslant \beta < \alpha_*$ справедливы оценки

$$\int_{-r}^{1} |D_{\psi}^{j} \mathcal{G}(\psi, \chi; \zeta)| d\chi \leqslant C(\beta, \nu) M_{2-j}(|\operatorname{Re} \zeta|) \qquad (j = 0, 1),$$

$$\int_{-r}^{1} |\mathcal{K}(\chi; \zeta)| d\chi \leqslant C(\beta, \nu) M_{1}(|\operatorname{Re} \zeta|), \qquad \frac{1}{|\Delta(\zeta)|} \leqslant C(\beta, \nu) M_{1}(|\operatorname{Re} \zeta|).$$

ДОКАЗАТЕЛЬСТВО. Выберем пока произвольным образом вещественное число L>0 и рассмотрим отдельно случаи $|\operatorname{Re}\zeta|\leqslant L$ и $|\operatorname{Re}\zeta|\geqslant L$. Для функций $\mathcal G$ и $\mathcal K$ ввиду их равномерной ограниченности на компактном множестве $|\operatorname{Re}\zeta|\leqslant L$ сразу имеем оценки

$$\int_{-r}^{1} |\mathcal{G}(\psi, \chi; \zeta)| d\chi \leqslant C(L), \qquad \int_{-r}^{1} |\mathcal{K}(\chi; \zeta)| d\chi \leqslant C(L).$$

При $|\operatorname{Re}\zeta|\geqslant L$ в полосе $-r\leqslant\psi\leqslant0$ с помощью (16) и (17) получаем

$$\begin{split} \int\limits_{-r}^{1} \left| \mathcal{G}(\psi,\chi;\,\zeta) \right| d\chi \leqslant \\ \leqslant \left| \frac{sh\,\zeta\psi}{\zeta\,sh\,r\zeta} \right| \int\limits_{-r}^{\psi} \left| sh\,\zeta(\chi+r) \right| d\chi + \left| \frac{sh\,\zeta(\psi+r)}{\zeta\,sh\,r\zeta} \right| \int\limits_{\psi}^{0} \left| sh\,\zeta\chi \right| d\chi \leqslant \\ \leqslant \left| \frac{sh\,\zeta\psi}{\zeta\,sh\,r\zeta} \right| \int\limits_{-r}^{\psi} ch\,\xi(\chi+r)\,d\chi + \left| \frac{sh\,\zeta(\psi+r)}{\zeta\,sh\,r\zeta} \right| \int\limits_{\psi}^{0} ch\,\xi\chi\,d\chi \leqslant \\ \leqslant \left| \frac{sh\,\zeta\psi}{\zeta\,sh\,r\zeta} \right| \left| \frac{sh\,\xi\psi}{\zeta\,sh\,r\zeta} \right| + \left| \frac{sh\,\zeta(\psi+r)}{\zeta\,sh\,r\zeta} \right| \left| \frac{sh\,\xi\psi}{\xi} \right| \leqslant \\ \leqslant 2 \left| \frac{sh\,\xi\psi\,sh\,\xi(\psi+r)}{\xi^2\,sh\,r\xi} \right|. \end{split}$$

Отсюда, поскольку

$$\max_{\psi \in [-r,0]} \left| sh \, \xi \psi \, sh \, \xi (\psi + r) \right| = \frac{1}{2} \left(ch \, r \xi - 1 \right),$$

при $|\xi| \geqslant L$ получаем оценку

$$\int_{-r}^{1} |\mathcal{G}(\psi, \chi; \zeta)| d\chi \leqslant \frac{C(L)}{|\xi|^2}.$$

А в полосе $0\leqslant \psi\leqslant 1$, обозначив $\omega=\sqrt{\zeta^2-\nu^2}$ и $\gamma=\omega$, аналогично имеем

$$\begin{split} \int\limits_{-r}^{1} \left| \mathcal{G}(\psi,\chi;\,\zeta) \right| d\chi \leqslant \\ \leqslant \left| \frac{sh \, \omega(\psi-1)}{\omega \, sh \, \omega} \right| \int\limits_{0}^{\psi} e^{\frac{\sigma}{2} \, (\psi-\chi)} |sh \, \omega\chi| \, d\chi + \left| \frac{sh \, \omega\psi}{\omega \, sh \, \omega} \right| \int\limits_{\psi}^{1} e^{\frac{\sigma}{2} \, (\psi-\chi)} |sh \, \omega(\chi-1)| \, d\chi \leqslant \\ \leqslant e^{\frac{\sigma}{2}} \left| \frac{sh \, \omega(\psi-1)}{\omega \, sh \, \omega} \right| \int\limits_{0}^{\psi} ch \, \gamma\chi \, d\chi + e^{\frac{\sigma}{2}} \left| \frac{sh \, \omega\psi}{\omega \, sh \, \omega} \right| \int\limits_{\psi}^{1} ch \, \gamma(\chi-1) \, d\chi \leqslant \\ \leqslant e^{\frac{\sigma}{2}} \left| \frac{sh \, \omega(\psi-1)}{\omega \, sh \, \omega} \right| \left| \frac{sh \, \gamma\psi}{\gamma} \right| + e^{\frac{\sigma}{2}} \left| \frac{sh \, \omega\psi}{\omega \, sh \, \omega} \right| \left| \frac{sh \, \gamma(\psi-1)}{\gamma} \right| \leqslant \\ \leqslant 2e^{\frac{\sigma}{2}} \left| \frac{sh \, \gamma\psi \, sh \, \gamma(\psi-1)}{\gamma^2 \, sh \, \gamma} \right| \leqslant \frac{C}{|\gamma|^2}. \end{split}$$

Оценим в последней формуле величину $|\gamma| = |\operatorname{Re}\sqrt{\zeta^2 - \nu^2}|$ снизу, используя для этого тригонометрическое представление $\zeta^2 - \nu^2 = \tau \, e^{i\theta}$, согласно которому $|\gamma| = \sqrt{\tau} \, |\cos\frac{\theta}{2}|$ и

$$\theta = \mathrm{Arg}(\zeta^2 - \nu^2) = \mathrm{Arg}(\zeta - \nu) + \mathrm{Arg}(\zeta + \nu).$$

Если выбрать $L>\nu$, то при $\mathrm{Re}\,\zeta\geqslant L$ точки $\zeta-\nu$ и $\zeta+\nu$ будут лежать в одной и той же полуплоскости относительно оси ординат. Отсюда, поскольку в полосе $|\mathrm{Im}\,\zeta|<\beta$ выполнено

$$\max_{\operatorname{Re} \, \zeta \geqslant L} \left| \frac{\theta}{2} \right| \leqslant \max_{\operatorname{Re} \, \zeta \geqslant L} |\operatorname{Arg}(\zeta - \boldsymbol{\nu})| = |\operatorname{Arg}((L - \boldsymbol{\nu}) + i\boldsymbol{\beta})|,$$

а величина $|\cos\frac{\theta}{2}|$ монотонно убывает при $\mathrm{Re}\;\zeta\geqslant L$ с ростом $|\theta|$, получаем неравенство

$$|\cos\frac{\theta}{2}| \geqslant \cos\operatorname{Arg}\left((L-\nu) + i\beta\right) = \frac{L-\nu}{\sqrt{(L-\nu)^2 + \beta^2}}.$$

Поэтому, если число L с самого начала выбрано так, что $L>2\nu$, величина $|\cos\frac{\theta}{2}|$ будет строго отделена от нуля при $|\operatorname{Re}\zeta|\geqslant L$. Аналогичное неравенство для указанной величины имеет место и при $\operatorname{Re}\zeta\leqslant -L$. Учитывая это ее свойство вместе с неравенством для модуля $\tau=\left|\zeta^2-\nu^2\right|\geqslant |\xi|^2-\nu^2$, получаем неравенство

$$\frac{1}{|\gamma|} = \frac{1}{\sqrt{\tau} \left|\cos\frac{\theta}{2}\right|} \leqslant \frac{C(\beta, \nu)}{|\xi|},$$

которое обосновывает итоговую оценку

$$\int_{-r}^{1} |\mathcal{G}(\psi, \chi; \zeta)| d\chi \leqslant \frac{C(\beta, \nu)}{|\xi|^2}$$

при $0\leqslant\psi\leqslant 1$. Оценка интеграла $\int\limits_{-r}^{1}|D_{\psi}^{j}\mathcal{G}(\psi,\chi;\,\zeta)|\,d\chi$ при j=1 получается аналогичным образом.

Проведем теперь оценку интеграла $\int_{-r}^{1} |\mathcal{K}(\chi; \zeta)| d\chi$ при $|\text{Re } \zeta| \geqslant L$. Имеем следующую цепочку неравенств:

$$\begin{split} \int_{-r}^{1} |\mathcal{K}(\chi;\,\zeta)| \, d\chi &= \int_{-r}^{0} \left| \frac{\operatorname{sh} \zeta(\chi+r)}{\operatorname{sh} r \zeta} \right| \, d\chi + \int_{0}^{1} \left| \frac{\operatorname{sh} \sqrt{\zeta^{2} - \nu^{2}} \left(1 - \chi\right)}{\operatorname{sh} \sqrt{\zeta^{2} - \nu^{2}}} \right| \, d\chi \leqslant \\ &\leqslant \frac{1}{|\operatorname{sh} r \zeta|} \int_{-r}^{0} \operatorname{ch} \xi(\chi+r) \, d\chi + \frac{1}{|\operatorname{sh} \sqrt{\zeta^{2} - \nu^{2}}|} \int_{0}^{1} \operatorname{ch} \gamma(1 - \chi) \, d\chi \leqslant \\ &\leqslant \frac{1}{|\operatorname{sh} r \zeta|} \left| \frac{\operatorname{sh} r \xi}{\xi} \right| + \frac{1}{|\operatorname{sh} \sqrt{\zeta^{2} - \nu^{2}}|} \left| \frac{\operatorname{sh} \gamma}{\gamma} \right| \leqslant \\ &\leqslant \frac{1}{|\xi|} + \frac{1}{|\gamma|} \leqslant \frac{C(\beta, \nu)}{|\xi|}. \end{split}$$

Оценка для функции $\Delta(\xi)$, имеющей первый порядок роста по ξ при $|\xi| \to \infty$, достаточно элементарна. Лемма доказана.

5. Оценка решения

Пусть пара чисел Фруда (F_1, F_2) такова, что дисперсионная функция $\Delta(\xi)$, определенная формулами (12) и (13), не имеет вещественных корней. Следующая теорема дает в этой ситуации достаточное условие существования решения в классе $H_{\rho}^{\alpha}(\Pi)$ с оценками его производных через нормы правых частей в уравнениях и граничном условии.

Теорема 1. Пусть $\varphi \in E^{\alpha}_{\rho,1}(\mathbb{R}), \ f_j \in E^{\alpha}_{\rho}(\bar{\Pi}_j) \ (j=1,2) \ c$ показателем $\alpha < \alpha_*$, где α_* задано в (14). Тогда формула (8) представляет решение u задачи (1)–(3), принадлежащее пространству $H^{\alpha}_{\rho}(\Pi)$. Кроме того, при $0 \leq m+n \leq 2$ справедлива оценка

$$||D_x^m D_{\psi}^n u||_{E_{\rho}^{\alpha}(\bar{\Pi}_j)} \leqslant C \left(||\varphi||_{E_{\rho,1}^{\alpha}(\mathbb{R})} + \max_{k=1,2} ||f_k||_{E_{\rho}^{\alpha}(\bar{\Pi}_k)} \right).$$

ДОКАЗАТЕЛЬСТВО. Обозначим $I_1 = [-r, 0], I_2 = [0, 1]$ и представим оцениваемую величину следующим образом:

$$||D_x^m D_{\psi}^n u||_{E_{\rho}^{\alpha}(\bar{\Pi}_j)} = \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \sup_{\psi \in I_j} |\zeta^m D_{\psi}^n \widehat{u}(\xi + i\eta, \psi)| d\xi \leqslant J_1 + J_2 + J_3,$$

где

$$J_{1} = \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \sup_{\psi \in I_{j}} \left| \zeta^{m} \int_{-r}^{1} D_{\psi}^{n} \mathcal{G}(\psi, \chi; \zeta) \, \widehat{f}(\zeta, \chi) \, d\chi \right| d\xi,$$

$$J_{2} = \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \sup_{\psi \in I_{j}} \left| \zeta^{m} D_{\psi}^{n} \frac{s(\psi) \mathcal{K}(\psi; \zeta)}{\Delta(\zeta)} \widehat{\varphi}(\zeta) \right| d\xi,$$

$$J_{3} = \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \sup_{\psi \in I_{j}} \left| \zeta^{m} D_{\psi}^{n} \frac{s(\psi) \mathcal{K}(\psi; \zeta)}{\Delta(\zeta)} \int_{-r}^{1} F^{2}(\chi) \mathcal{K}(\chi; \zeta) \, \widehat{f}(\zeta, \chi) \, d\chi \right| d\xi.$$

Случай 1: $n \neq 2$. Оценим все три слагаемых. Для J_1 , применяя лемму 1, имеем

$$\begin{split} J_{1} \leqslant \sup_{|\eta| < \alpha} \int\limits_{-\infty}^{+\infty} e^{\rho |\xi|} \sup_{\psi \in I_{j}} \left(|\zeta^{m}| \int\limits_{-r}^{1} \left| D_{\psi}^{n} \mathcal{G}(\psi, \chi; \, \zeta) \, \widehat{f}(\zeta, \chi) \right| \, d\chi \right) \, d\xi \leqslant \\ \leqslant \sup_{|\eta| < \alpha} \int\limits_{-\infty}^{+\infty} e^{\rho |\xi|} \left| \zeta^{m}| \sup_{\chi \in I_{j}} |\widehat{f}_{j}(\zeta, \chi)| \, \sup_{\psi \in I_{j}} \left(\int\limits_{-r}^{1} \left| D_{\psi}^{n} \mathcal{G}(\psi, \chi; \, \zeta) \right| \, d\chi \right) \, d\xi \leqslant \\ \leqslant C_{1} \sup_{|\eta| < \alpha} \int\limits_{-\infty}^{+\infty} e^{\rho |\xi|} \left| \zeta^{m}| \sup_{\chi \in I_{j}} |\widehat{f}_{j}(\zeta, \chi)| \, M_{2-n}(|\xi|) \, d\xi \leqslant C_{2} \|f_{j}\|_{E_{\rho}^{\alpha}(\bar{\Pi}_{j})}. \end{split}$$

Для J_2 при $m \neq 0$ в силу принадлежности производной $\varphi'(x)$ классу $E_{\rho}^{\alpha}(\mathbb{R})$ верны следующие соотношения:

$$J_{2} = \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \sup_{\psi \in I_{j}} \left| \zeta^{m-1} D_{\psi}^{n} \frac{s(\psi) \mathcal{K}(\psi; \zeta)}{\Delta(\zeta)} \widehat{\varphi'}(\zeta) \right| d\xi \leqslant$$

$$\leqslant \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \frac{|\zeta|^{m-1}}{|\Delta(\zeta)|} |\widehat{\varphi'}(\zeta)| \sup_{\psi \in I_{j}} \left| D_{\psi}^{n} \left(s(\psi) \mathcal{K}(\psi; \zeta) \right) \right| d\xi \leqslant$$

$$\leqslant C_{3} \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} |\zeta|^{m-1} M_{1}(|\xi|) |\widehat{\varphi'}(\zeta)| \sup_{\psi \in I_{j}} \left| D_{\psi}^{n} \left(s(\psi) \mathcal{K}(\psi; \zeta) \right) \right| d\xi.$$

Несложно показать, что выполнено неравенство

$$|D^n_{\psi}(s(\psi)\mathcal{K}(\psi;\zeta))| \leqslant C|\zeta|^n.$$

Таким образом, получаем, что

$$J_{2} \leqslant C_{4} \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} Ce^{\rho|\xi|} |\zeta|^{m+n-1} M_{1}(|\xi|) |\widehat{\varphi'}(\zeta)| \ d\xi \leqslant C_{5} \|\varphi\|_{E_{\rho,1}^{\alpha}(\mathbb{R})}.$$

При m=0 для J_2 имеем

$$J_{2} = \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \sup_{\psi \in I_{j}} \left| D_{\psi}^{n} \frac{s(\psi)\mathcal{K}(\psi; \zeta)}{\Delta(\zeta)} \widehat{\varphi}(\zeta) \right| d\xi \leqslant$$

$$\leqslant \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} \frac{|\widehat{\varphi}(\zeta)|}{|\Delta(\zeta)|} \sup_{\psi \in I_{j}} \left| D_{\psi}^{n} \left(s(\psi)\mathcal{K}(\psi; \zeta) \right) \right| d\xi \leqslant$$

$$\leqslant C_{6} \sup_{|\eta| < \alpha} \int_{-\infty}^{+\infty} e^{\rho|\xi|} |\zeta|^{n} M_{1}(|\xi|) |\widehat{\varphi}(\zeta)| d\xi \leqslant C_{7} \|\varphi\|_{E_{\rho,1}^{\alpha}(\mathbb{R})}.$$

Используя те же приемы, несложно доказать, что

$$J_3 \leqslant C_8 \max_{k=1,2} ||f_k||_{E_{\rho}^{\alpha}(\bar{\Pi}_k)}.$$

Искомое неравенство обосновано.

Случай 2: n=2. Оценка выполнена в силу уравнений (1)–(2) и уже полученных выше оценок решения.

Теорема доказана.

Список литературы

- 1. Makarenko N. I. Smooth Bore in a Two-Layer Fluid // Intern. Ser. of Numerical Math. Basel: Birkhäuser Verlag, 1992. Vol. 106. P. 195–204.
- 2. *Макаренко Н. И., Мальцева Ж. Л.* О спектре фазовых скоростей внутренних волн в слабостратифицированной двухслойной жидкости // Изв. РАН, МЖГ. 2009. № 2. С. 125–145.
- 3. *Белолипецкий А. А.*, *Тер-Крикоров А. М.* Асимптотические решения типа длинных волн для одного класса граничных задач математической физики // Нелинейный анализ и нелинейные дифференциальные уравнения / Под ред. В. А. Треногина, А. Ф. Филиппова. М.: Физматлит, 2003. С. 145–196.
- 4. Ter-Krikorov A. M. Theorie Exacte des Ondes Longues Stationnaires Dans un Liquide Heterogene // J. Mecanique. 1963. Vol. 2. No. 3. P. 351–376.
 - 5. *Кусис П.* Введение в теорию пространств H^p . М.: Мир, 1984.
 - 6. Хилле Э., Филлипс Р. Функциональный анализ и полугруппы. М.: ИЛ, 1962.
- 7. Демиденко Г. В., Успенский С. В. Уравнения и системы, не разрешенные относительно старшей производной. Новосибирск: Научная книга, 1998.
- 8. *Налимов В. И.* Псевдодифференциальные операторы с аналитическими символами // Сиб. мат. журн. 1997. Т. 38, № 3. С. 195—204.

Материал поступил в редколлегию 01.10.2010

Адреса авторов

ГОЛОСОВ Кирилл Владимирович

Институт гидродинамики им. М. А. Лаврентьева СО РАН пр. Акад. Лаврентьева, 15, Новосибирск, 630090, Россия e-mail: kirill.golosov@gmail.com

МАКАРЕНКО Николай Иванович

Институт гидродинамики им. М. А. Лаврентьева СО РАН пр. Акад. Лаврентьева, 15, Новосибирск, 630090, Россия Новосибирский государственный университет ул. Пирогова, 2, Новосибирск, 630090, Россия e-mail: makarenko@hydro.nsc.ru